

IC TEST SYSTEM

Benutzerhandbuch Probe Set

Set P331 L-ESD ESD-Generator Langer Puls 0,2/5

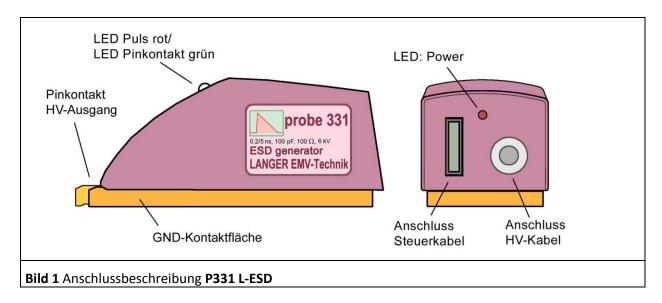
LANGER EMV-Technik

DE-01728 Bannewitz mail@langer-emv.de www.langer-emv.de

P331 L-ESD

Inhalt:		Seite
1 P	331 L-ESD Generator	3
1.1	Aufbau und Funktion der Probe P331 L-ESD	3
1.2	Eigenschaften	4
1.3	Systemaufbau	5
1.4	Überprüfung der Kurvenform	7
2 Sicherheitshinweise		8
3 G	3 Gewährleistung	
4 Technische Daten		9
5 Lieferumfang		10

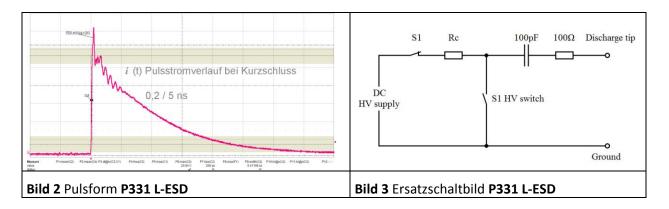
1 P331 L-ESD Generator


Die Probe dient der Erzeugung von ESD-Pulsen mit einer Anstiegszeit von 200ps und 5ns Impulsbreite zur leitungsgebundenen ESD-Einkopplung in den Prüfling (**Bild 2**).

Die leitungsgebundene ESD Einkopplung ist mit der **P331 L-ESD** direkt oder indirekt über Koppelnetzwerke (Norm) in IC-Pins möglich. In Interface Verbindungen oder spezielle High Speed Interfaces wie USB, LVDS, Ethernet usw. wird über Koppelnetzwerke eingekoppelt. Als Koppelnetzwerke können induktive oder kapazitive Koppler dienen (Info: Langer EMV-Technik GmbH).

Die Probe P331 L-ESD kann nur in Verbindung mit der Burst Power Station BPS 203 betrieben werden!

1.1 Aufbau und Funktion der Probe P331 L-ESD


Der Pinkontakt ist der Hochspannungsausgang (HV) der **P331 L-ESD**. Er dient zur Einkopplung des ESD-Impulses in den Test-IC.

In der Probe wird der Testimpuls durch einen Hochspannungsschalter und einem Koppelnetzwerk gebildet (Bild 2). Die für die Pulserzeugung erforderliche Hochspannung wird in der BPS 203 erzeugt und über ein Hochspannungskabel HV FI FI 1 m an den HV-Anschluss der Probe P331 L-ESD geleitet. Die BPS 203 steuert die P331 L-ESD. Die Signale werden über ein Steuerkabel FBK 12P 1 m an den Anschluss Steuerkabel geleitet. Die LED Puls/Kontakt zeigt die Auslösung eines ESD-Impulses und die Kontaktierung an den Prüfling an. Die LED leuchtet grün auf sobald eine galvanische Verbindung zwischen Pinkontakt und Prüfling besteht. Rotes Leuchten signalisiert die ausgelösten Impulse.

Die LED Power zeigt eine korrekte Stromversorgung der **P331 L-ESD** an. Mit der GND-Kontaktfläche wird die Probe auf der Groundplane *GND 25* vollflächig niederimpedant kontaktiert. Die Haftung auf der Groundplane erfolgt über die in der Probe eingebauten Magnete.

DE-01728 Bannewitz mail@langer-emv.de www.langer-emv.de

1.2 Eigenschaften

Der ESD Impuls ist durch seinen Stromverlauf charakterisiert. Der Stromverlauf des ESD Impulses ist im **Bild 2** dargestellt. Die Ersatzschaltung der **P331 L-ESD** ist im **Bild 3** dargestellt. Die entsprechenden Kurvenform Parameter sind aus **Tabelle 1** zu entnehmen.

HV [kV]	I max [A] +/- 10%	Anstiegszeit [ps] +/- 10%	Pulsbreite [ns] +/- 10%			
0.5	5.3	197	4.6			
1	10.6	199	4.8			
2	21.2	201	5.1			
4	42.4	207	5.7			
6	63.6	214	6.5			
Tabelle 1 Kurvenform Parameter						

Bei der Anwendung der Probe kann der jeweilige Kurzschlussspitzenstrom aus der Generatorspannung U_{VG} errechnet werden:

$$I_P = U_{VG} K$$

mit: K = 10,6 A / kV.

Die Gleichung sagt aus, dass die Probe pro Kilovolt Generatorspannung 10,6 A liefert.

Hinweis:

Die Impulsform ist nur gewährleistet, wenn die Probe **P331 L-ESD** mit einer *Mindestspannung von* **200 Volt** betrieben wird.

1.3 Systemaufbau

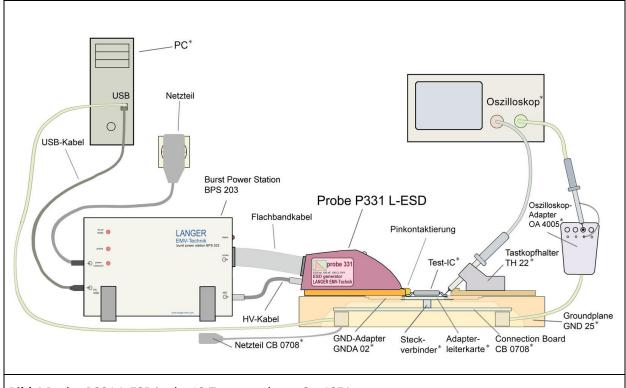
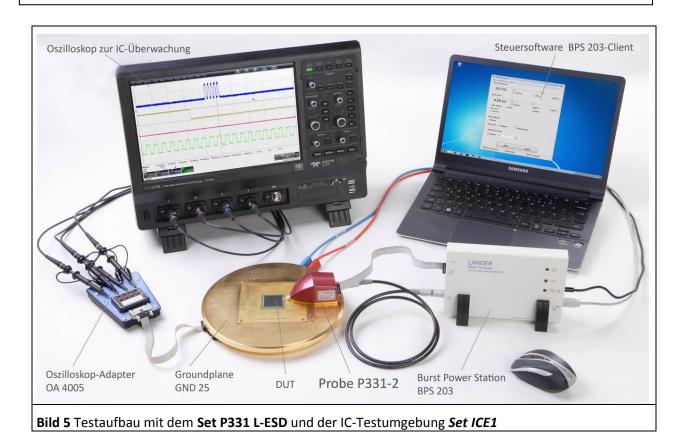


Bild 4 Probe P331 L-ESD in der IC-Testumgebung Set ICE1

Mit * gekennzeichnete Komponenten sind nicht im Lieferumfang enthalten.


Im **Bild 4** ist der Aufbau des IC-Testsystems mit IC-Testumgebung **Set ICE1** (**Tabelle 2**) und dem **Set 331-2** dargestellt. In der **BPS 203** wird die Hochspannung erzeugt und über das HV-Kabel **HV FI FI 1 m** und den HV-Eingang der **P331 L-ESD** zugeführt. Die Steuerung der **P331 L-ESD** erfolgt von der **BPS 203** über das Flachbandkabel. Die **BPS 203** wird über die USB-Verbindung vom PC gesteuert. Auf dem PC ist die Bediensoftware **BPS 203 Client** installiert.

In der Probe **P331 L-ESD** wird aus der Hochspannung der ESD-Stromimpuls erzeugt (Ersatzschaltung **Bild 3**). Der Stromimpuls (**Bild 2**) fließt über die Pinkontaktierung in den Test-IC.

Der Test-IC ist auf einer Testleiterkarte montiert. Die Testleiterkarte ist in die Groundplane eingesetzt und mit dem Connection Board über Steckverbinder verbunden.

Die Groundplane und das Connection Board sind Teile der IC-Testumgebung **Set ICE1**. Für die Auswertung von Signalen aus dem Test-IC können externe Geräte wie Oszilloskop oder spezielle Test-Hardware erforderlich sein (**Bild 5**).

DE-01728 Bannewitz mail@langer-emv.de www.langer-emv.de

Die aufgeführten Geräte sind in folgenden Anleitungen beschrieben:

Aufgabe	Bedienungsanleitung			
 Anleitung für die Entwicklung der Testleiterkarte 	Anleitung IC Pulstest (Langer EMV-Technik GmbH)			
Testablauf				
Groundplane <i>GND 25</i>	Benutzerhandbuch <i>Set ICE1</i>			
• Connection Board <i>CB 0708</i>				
Oszilloskop-Adapter <i>OA 4005</i>				
Tastkopfhalter <i>TH 22</i>				
Monitoring und Steuerung des Test-ICs				
Tabelle 2				

1.4 Überprüfung der Kurvenform

Die Kurvenform des Stromimpulses kann mit dem Shunt **SM 02-01 (**0,1 Ω) überprüft werden. Der Shunt hat eine Bandbreite von 3 GHz und kann mit max. 180 A Impulsstrom im Einzelpulsbetrieb belastet werden.

Der Shunt wird in den Groundadapter *GNDA 02* eingesetzt (Bild 6). Der SMA-Ausgang wird mit dem 50R-Eingang eines Oszilloskops entsprechender Bandbreite verbunden. Im Oszilloskop wird der Attenuator auf 26 dB (x20) eingestellt. Dann entspricht die Anzeige von 1 V dem Strom von 1 A in der Probe.

Die Überprüfung der Kurvenform ist vor jeder größeren Messaufgabe zu prüfen. Falls keine Abweichung von den Kurvenform-Parametern vorliegt, erfolgt die Kalibrierung der Probe **P331 L-ESD** alle 2 Jahre durch **Langer EMV-Technik GmbH**.

2 Sicherheitshinweise

Dieses Produkt richtet sich nach den Anforderungen der folgenden Bestimmungen der europäischen Union: 2004/108/EG (EMV-Richtlinie) und 2006/95/EG (Niederspannungsrichtline).

Wenn Sie ein Produkt der Langer EMV-Technik GmbH nutzen, bitte beachten Sie die folgenden Sicherheits-hinweise, um sich selbst gegen elektrischen Schlag oder das Risiko einer Verletzung zu schützen.

Lesen und befolgen Sie das Benutzerhandbuch und bewahren Sie diese für die spätere Nutzung an einem sicheren Ort auf. Die Anwendung des Gerätes ist von auf dem Gebiet der EMV sachkundigen und für diese Arbeiten unter Einfluss von Störspannungen und Burstfelder (elektrisch und magnetisch) geeignetem Personal auszuführen.

- Die Bedienungs- und Sicherheitshinweise aller jeweils eingesetzten Geräte sind zu beachten.
- Beschädigte oder defekte Geräte dürfen nicht benutzt werden.
- Machen Sie vor der Inbetriebnahme eines Messplatzes mit einem Produkt der Langer EMV-Technik GmbH eine Sichtprüfung. Beschädigte Verbindungskabel sind vor Inbetriebnahme zu tauschen.
- Lassen Sie ein Produkt der Langer EMV-Technik GmbH während der Funktion nicht ohne Überwachung.
- Das Produkt der Langer EMV-Technik GmbH darf nur für Anwendungen genutzt werden, für die es vorgesehen ist. Jede andere Nutzung ist nicht erlaubt.
- Träger von Herzschrittmachern dürfen nicht mit dem Gerät arbeiten.
- Grundsätzlich sollte der Prüfaufbau über eine gefilterte Stromversorgung betrieben werden.
- Achtung! Bei Betrieb der Probe, können funktionsbedingt Nahfelder und Störaussendungen entstehen. Aufgabe des Anwenders ist es, Maßnahmen zu treffen, dass Produkte, die außerhalb der betrieblichen EMV-Umgebung installiert sind, in ihrer bestimmungsgemäßen Funktion nicht beeinträchtigt werden (insbesondere durch Störaussendung).

Das kann erfolgen durch:

- Einhalten eines entsprechenden Sicherheitsabstandes
- Verwenden geschirmter oder schirmender Räume
- Die in Baugruppen eingespeisten Störgrößen können funktionsbedingt bei zu starker Einwirkung zu Zerstörungen (Latch-up) im Prüfling führen. Schutz bietet:
 - Vorschalten eines Schutzwiderstandes in die Stromversorgung des ICs
 - schrittweises Erhöhen der Störgröße, Abbruch bei Funktionsfehler
 - Unterbrechen der Stromversorgung des Prüflings im Latch-up-Fall.

Achtung! Es ist zu sichern, dass interne Funktionsfehler von außen erkennbar sind. Bei Nichterkennbarkeit können bei Steigerung der Einkopplung Zerstörungen im Prüfling entstehen. Gegebenenfalls sind folgende Methoden anwendbar:

- Überwachung repräsentativer Signale im Prüfling
- spezielle Prüfsoftware
- sichtbare Reaktion des Prüflings auf Eingabehandlungen (Reaktionstest des Prüflings).

Für die Zerstörung von Prüflingen kann keine Haftung übernommen werden!

DE-01728 Bannewitz mail@langer-emv.de www.langer-emv.de

3 Gewährleistung

Langer EMV-Technik GmbH wird jeden Fehler aufgrund fehlerhaften Materials oder fehlerhafter Herstellung während der gesetzlichen Gewährleistungsfrist beheben, entweder durch Reparatur oder mit der Lieferung von Ersatzgeräten.

Die Gewährleistung gilt nur unter folgenden Bedingungen:

- den Hinweisen und Anweisungen der Bedienungsanleitung wurde Folge geleistet.

Die Gewährleistung verfällt, wenn:

- am Produkt eine nicht autorisierte Reparatur vorgenommen wurde,
- das Produkt verändert wurde,
- das Produkt nicht bestimmungsgemäß verwendet wurde.

4 Technische Daten

P331 L-ESD Generator			
Maße (Breite/Höhe/Tiefe)	79/41/40 (mm)		
Gewicht	0,25 kg		
Frequenzbereich	0,1 Hz – 10 Hz		
Spannungsbereich	100 V - 6 kV		
Pulsform	0,2 / 5 ns		
Energiespeicherkapazität	100 pF		
Innenwiderstand	100 Ω		

5 Lieferumfang

Pos.	Bezeichnung	Тур	Parameter	Stck
01	Probe	P331 L-ESD		1
02	Burst Power Station	BPS 203		1
03	Steuersoftware	BPS 203-Client		1
04	Steckernetzteil	NT Ex EU	12 V / 1 A	1
05	Flachbandkabel	FBK 12P 1 m	1 m	1
06	Hochspannungskabel	HV FI FI 1 m	1 m	1
07	USB-Kabel	Тур А-В		1
08	Messkabel	SMA-SMB	1 m	1
09	Shunt	SM 02-01	0,1 R	1
10	Koffer mit Schaumstoffeinlage			1
11	Benutzerhandbuch			1
12	Kurzanleitung			1

Es ist nicht erlaubt ohne die schriftliche Zustimmung der Langer EMV-Technik GmbH, dieses Dokument oder Teile davon zu kopieren, zu vervielfältigen oder elektronisch zu verarbeiten. Die Geschäftsführung der Langer EMV-Technik GmbH übernimmt keine Verbindlichkeiten für Schäden, welche aus der Nutzung dieser gedruckten Informationen resultieren.

LANGERNöthnitzer Hang 31Tel.: +49(0)351/430093-0EMV-Technik GmbHDE-01728 BannewitzFax: +49(0)351/430093-22www.langer-emv.demail@langer-emv.de